Towards a Progressive Open Source Framework for SciVis and InfoVis

Gueunet Charles*
Kitware

X papers as TVCG journal articles

D papers in conference proceedings

|EEE Symposium on
Information Visualization (InfoVis)

|IEEE Conference on
Visualization (Vis)

Mazen Francois’
Kitware

\\\\\\\\\\

Visualization &
Visual Analytics

'2006 '2007"

T 2010”7 T201272013" T2015" ! "2018' !

IEEE VisWeek

Figure 1: IEEE VIS terminology history from [1].

ABSTRACT

In a world where data has become too large for direct human per-
ception, scientists have developed methods for specific data explo-
ration. Until recently, two main methodologies were used for their
exploration: scientific visualization (SciVis) for data with inher-
ent geometry (simulation/acquisition) and information visualiza-
tion (InfoVis) for abstract data. Though these fields evolved in
parallel, sharing journals and conferences, they had distinct chal-
lenges, methodologies, and experts. Recently, a visible transition
has begun, with the two communities converging, exemplified by
IEEE VIS conference removing distinct categories. In this context,
we propose a high-level discussion on an open-source framework
widely used in SciVis and how progressive processing and visual-
ization could help bringing its abilities to InfoVis.

Index Terms: Scientific Visualization, Information Visualization,
Methodology, Tools.

1 INTRODUCTION

As data grows in size and complexity, scientists continuously seek
new methods for interactive visualization and exploration, leading
to the creation of new domains. Taking IEEE VIS, the premiere
conference in visualization research as an indicator of a more gen-
eral trend, we observe a recent convergence between the fields of
data visualization.

In this article, we present a free and open source (FOSS) frame-
works widely used in scientific visualization, and we propose a
discussion on how adapting this framework to progressive analy-
sis would help reach a wider public in the visualization community.

2 CONTEXT AND STATE OF THE ART

The fields of scientific visualization and information visualization
have historically been distinct yet complementary domains within
the broader context of data visualization. Taking as a reference, the
terminology used for IEEE VIS [11], emphasized in Fig. 1, Sci-
entific Visualization focuses on the representation and exploration
of data coming from simulation or acquisition of a physical phe-
nomenon, often dealing with complex two or three-dimensional
data sets. In contrast, Information visualization primarily handles
abstract, often high-dimensional data that may not have an inherent
spatial structure.

*e-mail: charles.gueunet@Xkitware.com
fe-mail: francois.mazen@kitware.com

In the field of scientific visualization (SciVis), the volume of
data to be analyzed has expanded over time in tandem with the in-
creasing capabilities of supercomputers running simulations. Con-
sequently, the tools employed in this field are usually developed
with distributed computing in mind. One example is ParaView [3],
a free and open-source (FOSS) application and framework widely
used by the SciVis community. Recently, significant efforts have
been made regarding in situ exploration, to visualize and process
data directly from simulations as they execute, for example with
Catalyst [4, 5] or Visit LibSim [8].

At the same time, information visualization (InfoVis) is meant to
deal with more abstract data, like exploring customer market basket
in retail data, and scientists in this domain are more used to build
their own tailored application. A consequence is that the dominant
technologies in the domains are more tools or frameworks meant to
build not only the user interface, but the whole user experience with
tailored selection and query and specific representations. Examples
include language-based tools like R [10] and Vega-Lite [15] various
Python-based solutions (IPython [14] and its Jupyter derivatives),
as well as dashboard-based solutions like Tableau [13].

While both fields focus on (large) data analysis, they have
adopted distinct methodologies due to differing priorities of their
user bases. However, after years of exploration, the remaining chal-
lenges in both fields increasingly converge, with interactivity and
data size being at the core of the attention. Therefore, we believe
that adding progressive analysis capabilities into a SciVis-enabled
solution could be a promising approach to support scientists in both
fields.

3 PARAVIEW AND VTK: CURRENT STATE

This section provides an overview of the ParaView (and VTK [12])
features that are already publicly available and could be used for
data visualization in its broader definition, including InfoVis.

As ParaView relies on a client-server architecture, we will use
the term Backend to denote everything happening on the server
side, and usually related to the data processing. On the other end,
the term Frontend will be used to denote the client side, usually re-
lated to pipeline definition, user interactions and data representation
configurations.

3.1 Backend

From the start, the VTK data model has been designed with dis-
tribution in mind. Consequently, adding a new processing filter in
ParaView requires minimal effort to support distributed data, and
in many cases, no additional work is needed. We think this ability
played an important role in the wide adoption of ParaView by the
HPC community. Even though this data model mainly focuses on
data having a geometry, graphs, trees and tables are also supported
and can thus be processed and represented in a distributed fashion.

Figure 2: Processing pipeline in ParaView’s node editor with data
flowing from left to right. First a CFD data set is read, then a subset
is extracted by applying the corresponding filter and finally glyphs are
added to the result, taking a custom generated arrow model as the
second input.

To process those data, VTK is based on a processing and render-
ing pipeline. The processing pipeline as highlighted in Fig. 2 is a
direct acyclic graph where a node is a processing filters and an edge
represent a connection between one of the outputs of a filter to one
of the inputs of another one. Some key features of this pipeline are:
On-Demand processing: Filters are only executed when their out-
put is required, preventing unnecessary computations. This in-
cludes partial pipeline updates: as each filter maintains its most
recent output(s) in cache, it is possible to only process the mini-
mum amount of filters when executing the pipeline after a change.
Using the pipeline from Fig. 2, changing the arrow model would
only update the glyph filter without re-executing the extraction one.
Parallel Processing: Filters and other pipeline components can
handle distributed datasets efficiently. Multi-threads parallelism is
also used to leverage multi-core architecture.

The cleverness around the data flow in the pipeline graph and
the execution of the filters is handled in specific classes named
executives. For example, the simplest executive already ensures
On-Demand processing as described previously, while the more
advanced executives bring additional functionalities regarding data
distribution, time management, or even to limit the size of cached
data along the pipeline. The ParaView pipeline can operate in a
streaming manner, processing and visualizing data as it is gener-
ated. In this mode, the pipeline is regularly re-executed and specific
filters can be used to aggregate the data incrementally as it is the
case with the SLAM filter of LidarView for example. This feature
is important as it is a key feature for future progressive analysis.

Once the processing is done, we may follow up with serializa-
tion of the output on the disk. Thanks to VTK, distributed IO are
natively supported including for tables. Distributed tables are also
available for in situ processing. Another important feature it the
rendering, either in an interactive scene, or through screenshots /
cinema databases generations. Unfortunately, as we will detail in
the next section, in its current state the rendering of distributed ta-
bles often involve to transfer most of the data to the client side.

3.2 Frontend

Thanks to the client-side architecture mentioned previously, it is
possible to use the ParaView server with various clients, ranging
from a Qt client (cf. Fig. 3) to a python shell or notebook, or even a
web based interface. Regarding the python client, it is worth men-
tioning that ParaView also has a Jupyter Notebook kernel, or an
integration trough Trame, a framework made to quickly build web
application with data visualization in mind.

For developers that want to quickly prototype an analysis
pipeline based on VTK, it is possible to use Python thanks to the
native wrapping, although this is not the most convenient way. In

BX (FlE]0]m) o[s[o][x] (FEIE]E) (mIElalx]

)

Object Inspector 8

Properties | Dispiay | Information
RoDelete | 2|

[&IE) [CIEICIEINEI 6

005 26406

[CIEICIER]

Source | High Resoltion Line Source ~
* ShowLine 150006
Point [29.0773¢ [20.2671¢) [19.92407 o

Point2 (1411771 [120.2064 121187

Xavis

O coeffilent

005
Y svis 500000

2mis

Resolution 100 - § % W 9 on o o 03 obs
Note: Move mouse and use ' key Posiion Angstroms)
to change point position (Ans)

O] v

G

Figure 3: Example of a ParaView interface with the pipeline on the
leftmost part and an analysis results display in four windows mixing
3D representations and charts.

order to help analysts, VTK brings some useful utilities to con-
verts its data object to NumPy arrays back and forth, and a more
pythonic syntax is currently being added. It is worth mentioning
here PyVista [16], a Python package that greatly simplifies VTK
usage and provides another Jupyter Notebook integration.

In the following sections, we outline the common features of
most existing interfaces, noting that they usually offer additional
functionalities tailored to specific user needs. In terms of data rep-
resentation, a wide range of methods is available for exploring geo-
metric datasets, ranging from fast rasterisation techniques to photo-
realistic but computationally heavy ray tracing. Abstract data is
usually also supported through several representations such as line
charts, histogram, parallel coordinates, or plot matrix view box. An
example mixing 3D views with charts is presented in Fig. 3.

In these views, beyond the standard interactions for updating the
viewpoint, special objects called widgets can be added to the scene
(or chart) to enhance interactivity. Widgets are typically used to
help with parameters configuration for filters in the pipeline; for
example, an interactive plane can be manually positioned to set up
a slice. Another form of interactivity is the selection: the VTK
data model includes a class specifically designed to handle complex
subsets of data. It is based on a tree, where each node represents
an expression defining a subset, connected by edges corresponding
to simple operators like AND, or OR. This class itself does not
assume any geometry on the data. The frontend is responsible for
offering tools to the user, potentially utilizing widgets, to generate
these selections. Currently, most frontends provide both geometric
tools and a straightforward request mechanism to fill the expression
nodes of the previously defined tree.

3.3 Open Communities

While the previous paragraphs were focusing on the technical as-
pect, it is worth mentioning that both VTK and ParaView being
FOSS, they have fostered a wide community of users and contrib-
utors. Through public forums like their Discourse '+, or tools like
Gitlab 3# to open issues and submit merge requests, scientists col-
laborate, support one another, and actively participate in shaping
the future of these software tools.

'https ://discourse.vtk.org/
2https://discourse.paraview.org
3https://gitlab.kitware.com/vtk/vtk

4https ://gitlab.kitware.com/paraview/paraview

https://discourse.vtk.org/
https://discourse.paraview.org
https://gitlab.kitware.com/vtk/vtk
https://gitlab.kitware.com/paraview/paraview

4 LIMITATION

In order to meet InfoVis expectations, SciVis tools are facing sev-
eral limitations, either on backend side or frontend side.

First, most of the VTK filters assume that the data has geome-
try and topology. For example, in order to process a point cloud
the user has to create a polydata data model where vertices cor-
respond to the point locations. A polydata is a commonly used
data model to represent a geometric structure consisting of vertices,
lines, polygons, and/or triangle strips, with point and cell attribute
values. Using this structure is sub-optimal for InfoVis because it
leads to extra memory usage and provides no easy way to manage
high-dimensional data. The usual work-around is to map some di-
mensions to point coordinates and other dimensions to Point Data.
This is because most of the SciVis filters assume few dimensions,
usually up to 6 for mechanical tensor processing. The Topology
Toolkit [6] (TTK), available in VTK and ParaView, adds specific
filters, like the Rips-complex or the dimension reduction [7], to
manage high-dimensional data and maps the result to VTK’s low-
dimensional model.

An other important limitation in the SciVis processing filters is
the blocking call mechanism, which means that while the process-
ing is running, the host application must wait for the end of the pro-
cess before visualizing any result. In addition, when VTK filters are
chained in a processing pipeline, there is a strict barrier in-between
filters to ensure that inputs are valid. This barrier currently prevents
any real progressive analysis.

On the user interaction side, most of InfoVis data exploration
implies selecting the relevant data and dimension to display. In
existing frontends, interactive selection is usually based on geome-
try, for example filtering the cells or the points to display with the
mouse, or combining simple expressions based on fields values by
basic operations. Hence, VTK lacks advanced SQL-like request
capability where the user can combine several criteria to reduce di-
mensionality and the number of elements to display.

In addition, while it is possible to define custom processing fil-
ters with Python, there is currently no high level grammar to de-
fine user specific request and visualization, like Vega and Vega-
Lite provide. Thankfully, the python wrappings of VTK and Par-
aView tend to help interoperability with classic InfoVis tooling like
Jupyter Notebooks. Unfortunately, in case of non-geometric data
the current implementation of VTK requires to fetch the whole data
set client side for visualization, which is not scalable.

5 PERSPECTIVES

The lack of progressiveness in SciVis has been identified as a key
factor that limits InfoVis usages. To fulfill InfoVis requirements,
this progressiveness should be improved at the processing level
(Backend) and at the user level (Frontend).

At the backend level, the data model could itself be progressive.
For example, the actual Adaptative Mesh Refinement (AMR) Data
Models, very popular in numerical simulation at scale like CFD or
Astrophysics, is a progressive data model. This hierarchical model
makes it possible to process and render at different levels of preci-
sion, sometimes pre-computed, which could be generalized to pro-
cess large high-dimensional InfoVis datasets. For example, t8code
[9] from DLR is a current implementation of this approach. In ad-
dition, the computation itself could be progressive and output ap-
proximate result in a timely fashion. A confidence interval could
be provided in order to refine in an iterative way up to an accept-
able answer. Ultimately, the system makes sure to output a result at
any given computing time, in order to create responsiveness for the
users. At VTK level, this new mechanism would be implemented as
anew execution model, with specific filters able to deliver results at
regular time intervals. Ultimately, the frequency of the output could
be driven by the executive in order to ensure progressiveness in the
user experience.

Most of InfoVis tooling are usable in high level scripting lan-
guages like python. Hence, SciVis tools should be also driven by
python scripts. VTK and ParaView are developed in C++, but a
python wrapping is available. It allows seamless integration with
InfoVis tools like SciKit learn or Jupyter Notebook, and Deep
Learning frameworks like Pytorch. However the syntax of the VTK
python API is basically a reflection of the C++ API, which is not in-
tuitive for InfoVis scientists. Pyvista [16] is a tentative to add such
pythonic layer on top of the existing VTK python wrapping. The
SciVis tools could implement similar sugar syntax to help integra-
tion in InfoVis pipelines.

Modularity is also key in InfoVis, and is also lacking in SciVis
tools due to historical reasons. ParaView Async [2] is an initia-
tive to bring asynchronous computation to the ParaView framework
with a micro-service approach. It strongly decouples the process-
ing service, the data service and the rendering service to improve
the user experience with more responsiveness while the computing
is in progress. For other VTK-based application, multi-process ap-
proach could be leveraged to guarantee similar interactivity for the
InfoVis users.

6 CONCLUSION

Following the convergence of the InfoVis and SciVis communities,
we analyzed the current state of a popular SciVis framework. From
this convergence view, we identified several limitations which are
holding the adoption of SciVis tools for InfoVis works. One of
the major factors is the lack of progressiveness either on the pro-
cessing side and on the user interaction side. This approach has
to be developed to bring SciVis and InfoVis to a common play-
ground, with strategic advantages at scale like reducing computing
resources needed.

We invite researchers, practitioners, and enthusiasts interested
in having a progressive analysis enabled FOSS solution to reach
forward to us or contribute.

ACKNOWLEDGMENTS

The authors wish to thank Louis Gombert and Léon Victor for the
internal review.

REFERENCES

[1] IEEE VIS 2021 website. https://ieeevis.org/year/2024/
blog/things-are-changing-2021. Accessed: 2024-06-11.

[2] ParaView Async website. https://gitlab.kitware.com/async/
async-paraview. Accessed: 2024-07-12.

[3] J. Ahrens, B. Geveci, and C. Law. ParaView: An end-user tool for
large data visualization. In Visualization Handbook. Elesvier, 2005.
ISBN 978-0123875822.

[4] U. Ayachit, A. Bauer, B. Geveci, P. O’Leary, K. Moreland, N. Fabian,
and J. Mauldin. Paraview catalyst: Enabling in situ data analysis
and visualization. In Proceedings of the First Workshop on In Situ
Infrastructures for Enabling Extreme-Scale Analysis and Visualiza-
tion (ISAV 2015), pp. 25-29, November 2015. doi: 10.1145/2828612.
2828624

[5] U. Ayachit, A. C. Bauer, B. Boeckel, B. Geveci, K. Moreland,
P. O’Leary, and T. Osika. Catalyst revised: Rethinking the paraview in
situ analysis and visualization API. In High Performance Computing,
pp. 484494, June 2021. doi: 10.1007/978-3-030-90539-2_33

[6] T. Bin Masood, J. Budin, M. Falk, G. Favelier, C. Garth, C. Gueunet,
P. Guillou, L. Hofmann, P. Hristov, A. Kamakshidasan, C. Kappe,
P. Klacansky, P. Laurin, J. Levine, J. Lukasczyk, D. Sakurai, M. Soler,
P. Steneteg, J. Tierny, W. Usher, J. Vidal, and M. Wozniak. An
Overview of the Topology ToolKit. In TopoInVis, 2019.

[71 H. Doraiswamy, J. Tierny, P. S. Silva, L. Nonato, and C. Silva.
Topomap: A 0O-dimensional homology preserving projection of high-
dimensional data. IEEE Transactions on Visualization amp; Com-
puter Graphics, 27(02):561-571, feb 2021. doi: 10.1109/TVCG.2020
3030441

https://ieeevis.org/year/2024/blog/things-are-changing-2021
https://ieeevis.org/year/2024/blog/things-are-changing-2021
https://gitlab.kitware.com/async/async-paraview
https://gitlab.kitware.com/async/async-paraview

[8]

[9]

[10]

[11]

[12]
[13]

[14]

[15]

[16]

C. Harrison. Visualization and analysis of hpc simulation data with
visit. PhD thesis, PhD thesis, Lawrence Livermore National Labora-
tory, 2021.

J. Holke, C. Burstedde, D. Knapp, L. Dreyer, S. Elsweijer, V. Unlii,
J. Markert, I. Lilikakis, N. Boing, P. Ponnusamy, and A. Basermann.
t8code v. 1.0 - modular adaptive mesh refinement in the exascale era.
In SIAM International Meshing Round Table 2023, March 2023.

R. Thaka and R. Gentleman. R: A language for data analysis
and graphics. Journal of Computational and Graphical Statistics,
5(3):299-314, 1996. doi: 10.1080/10618600.1996.10474713

P. Isenberg, F. Heimerl, S. Koch, T. Isenberg, P. Xu, C. Stolper,
M. Sedlmair, J. Chen, T. Moller, and J. Stasko. vispubdata.org: A
Metadata Collection about IEEE Visualization (VIS) Publications.
IEEE Transactions on Visualization and Computer Graphics, 23,
2017. To appear. doi: 10.1109/TVCG.2016.2615308

Kitware, Inc. The Visualization Toolkit User’s Guide, January 2003.
D. G. Murray. Tableau your data!: fast and easy visual analysis with
tableau software. John Wiley & Sons, 2013.

F. Pérez and B. E. Granger. Ipython: a system for interactive scientific
computing. Computing in science & engineering, 9(3):21-29, 2007.
A. Satyanarayan, D. Moritz, K. Wongsuphasawat, and J. Heer. Vega-
lite: A grammar of interactive graphics. IEEE transactions on visual-
ization and computer graphics, 23(1):341-350, 2016.

C. B. Sullivan and A. Kaszynski. PyVista: 3d plotting and mesh analy-
sis through a streamlined interface for the visualization toolkit (VTK).
Journal of Open Source Software, 4(37):1450, may 2019. doi: 10.
21105/joss.01450

	Introduction
	Context and state of the art
	ParaView and VTK: current state
	Backend
	Frontend
	Open Communities

	Limitation
	Perspectives
	Conclusion

